

Prairie Provinces Water Futures

John Pomeroy Director, Global Water Futures Programme

Global Water Futures: Solutions to Water Threats in an Era of Global Change

GWF aims:

- a) to place Canada as a global leader in water science for cold regions,
- b) to address the strategic needs of the Canadian economy in adapting to change and managing the risks of uncertain water futures and extreme events.

DESPITE THIS, CANADA IS NOT A WATER SECURE COUNTRY

- Mining
- Oil and Gas
- Agriculture Production
- Tourism
- Transportation

ALL SECTORS RELY ON WATER AVAILABILITY

Recent events such as

FLOOD, DROUGHT, AND FIRE

are affecting water availability and quality which influences the environment, public health and the Canadian economy

these events have been estimated to cost \$28 BILLION

from 2000-2017

WATER AVAILABILITY

85% of Canada lives in the south, while

60% of rivers flow north

Water availability is disproportionately spread over Canada's geography and unique ecosystems

Water stress is being compounded by large-scale urbanization and population growth

CLIMATE CHANGE

CANADA IS WARMING

2X THE GLOBAL AVERAGE

SHIFTING CANADA'S COLD-DOMINATED HYDROLOGICAL CYCLE

changing regime of snow-melt

THREATENING TO

DECREASE

INCREASE

- FLOOD
- DROUGHT

Global Water Futures - Mission

- Improve disaster warning develop:
 - scientific knowledge, monitoring and modelling technologies,
 - national forecasting capacity to predict the risk and severity of extreme events
- Predict water futures
 - use Big Data to make informed decisions,
 - Develop better models to assess change in human/natural land and water systems
- Inform adaptation to change and risk management to reduce the risk of water threats, design adaptive strategies, and enhance economic opportunities, propose
 - governance mechanisms,
 - management strategies,
 - policy tools

GWF Today

Awarded

over 7 years

2016 - 2023

60

observatories

39 projects

funded across Canada

15 universities

157 faculty investigators

356 partners

\$259 M

in GWF project & core team funding

\$104.8 M

\$154.5 M

Designing Solutions for Water Users

• 12 user-question led projects with 117 faculty investigators training 278 researchers in 15 universities and working with 327 partners

Transformative Water Science

 21 transformative science projects with 94 faculty investigators training 100 researchers in 10 universities, and working with 82 partners.

Adaptation Governance and Policy Changes in Relation to a Changing Moisture Regime

Significance of Groundwater Dynamics Within Hydrologic Models

Diagnosing and Mitigating Hydrologic Model Uncertainty in High-Latitude Canadian Watersheds

Improved Estimates of Wetland Evaporation

Indigenous Community Water Research Global Water Futures

• 6 co-led projects with 69 faculty and Indigenous community investigators training 36 researchers in 11 universities and 14 Indigenous communities,

Matawa Water Futures: Developing an Indigenous-informed framework for Watershed Monitoring and Stewardship

Mountain Water Futures Project Science Highlights

 New process modules for the Cold Regions Hydrological Model (CRHM)

Glacier Change, Land Use Change, Future

Climates

lce

Debris Cover

Ice-cored moraine

Rock, low angle

Rock, steep

Courtesy J. Pomeroy

Peyto Glacier, Alberta

Prairie Water Project Science Highlights

- Found that hydrological response to wetland loss differs among Prairie watershed types.
- Assembled maps on groundwater vulnerability, oil spills, and water production and use by the oil industry in Saskatchewan.
- Mapped groundwater recharge rates in Alberta
- Conducted four wetland surveys (n > 150), which represent the first extensive sampling of biogeochemical and pesticide conditions in the region.
- Developed a model to estimate which wetlands are most at risk of being removed by land owners based solely on private costs.
- Evaluated the interactive effects of climate and land cover/use on wetland biodiversity.

Formbloom Project Science Highlights

- Climate & precipitation linked to harmful algae bloom changes
 - Extreme event led to early onset bloom
- Can predict algae bloom onset 4-7 days in advance
- Novel seasonal patterns of diverse cyanotoxins
 - Toxin diversity greater than anticipated
 - Reason for major concern
- Predict timing of bloom pre-conditions
- Test science-based bloom mitigation options

Next Generation Solutions Project Science Highlights

Bias-corrected CanRCM4

Example from MRB of "raw" and corrected CanRCM4 surface meteorology for RCP8.5 and historical periods

MESH Modelling Framework

- CLASS LSS coupled to hydrological routing
- Represents glaciers, soil/permafrost, snowpacks, vegetation, water bodies
- Mountain MESH includes slope/aspect and elevation
- Prairie routing includes variable contributing area due to pond/sloughs

Mohamed Elshamy, Zelalem Tessema, Dan Princz, Bruce Davison, Al Pietroniro

Coupling Climate Change, Hydrology and Water Management

Driven by dynamically downscaled atmospheric models
Driving water quality and hydroeconomics models
Forming a Decision Support System suite of Integrated Models

MESH Modelling of the Saskatchewan River Basin

GWF Integrated Modelling Project for Canada – Saman Razavi,

GWF Core Modelling – Al Pietroniro

SRB as an Integrated Hydrological – Water Resources System

Saman Razavi: IMPC PI

GWF MESH Model Outputs for SRB

MESH Future Scenarios-Irrigation Expansion

- Saskatchewan:- Qu'Appelle and west side projects will potentially add 500,000 acres of irrigation area.
- Alberta:- irrigation districts will expand by approximately 12% (200,000 acres) by 2025.

GWF Decision Support Tool and Visualisation

SRB Streamflows under Climate Change with Current Water Management Rules

MESH hydrological model with water management driven by WATCH-GEM-CaPA bias-corrected CanRCM4. Glacier and irrigation area, land use, reservoir operations held constant.

SRB Mean annual flow volume variability over 30 years and 15 RCM forcings

Climate change impact on mean annual flow volume

Streamflow Station	Area (km²)	Mean annual flow (BCM) (Billion Cubic Meters)			Percentage Change (%) Relative to 1980 – 2010	
		1980 - 2010	2025 - 2055	2070 - 2100	2025 - 2055	2070 - 2100
Oldman River near the Mouth	27,532	3.144	3.490	3.610	11	15
Bow River near the Mouth	25,278	2.883	3.374	3.673	17	27
Red Deer River near Bindloss	47,849	1.373	1.671	1.862	22	36
North Saskatchewan river at Edmonton	28,096	6.147	6.883	7.284	12	19
Battle River near the Saskatchewan Boundary	25,064	0.0980	0.1475	0.149	51	52
North Saskatchewan River at Prince Albert	131,000	7.108	8.252	8.926	16	26
South Saskatchewan River at Saskatoon	141,000	7.322	8.545	9.171	17	25

Canadian Hydrological Model - Snow Forecast

www.snowcast.ca

Next Generation Hydrological Forecasting and Prediction

GWF National and Policy Initiatives

- Engagement with ECCC
 - Co-hosted 1st National Flood Forecasting Workshop, Vancouver Feb 2019
 - Joint national water prediction strategy

- MOU with NRCan
 - Co-hosted Water Science Summit, Ottawa, November 2018
- Sustainable Development Goals with UN University Institute for Water, Environment and Health (Hamilton) – UN Water Decade
- Water Security for Canadians
 - Strategic Briefing and Discussion, Ottawa, April 2019

The Sustainable Development Goals Water Report

Global Water Futures

Gweensask.ca

Water in the World

- Water in Canada
- Challenges for Achieving Waterrelated SDGs
- Rising to the Challenge
- Foundations for a Path forward

OPPORTUNITIES TOWARDS ACHIEVING SDG 6

How to Reach the Sustainable Development Goals for Water in Canada?

- Create a national water agency to provide water information and predictions, support integrated river basin management, transboundary agreements and reconciliation
- Commit to water sustainability as individuals, communities, institutions & governments
- Create, support & share strategic research
- Find room for co-created Indigenous leadership on water

www.gwf.usask.ca/SDGREPORT

By 2023, GWF will contribute to

- *Improved scientific foundations* for solving water problems.
- National water forecasting and prediction system
- Predictions of water futures around the world
- Water solutions for food security, energy security, infrastructure, economic development, safe communities, ecosystem conservation, governance.
- *Decolonialization* of Indigenous water management in Canada.
- Water, peace and security around the world
- Revitalized water strategy for Canada
- Making Canada known as the water solutions country.

Global Water Futures 3rd Annual Open Science Meeting

- GWF will hold its next Open Science meeting in Waterloo, ON, Canada
- 11–13 May, 2020
- Hosted jointly by the University of Waterloo and Wilfrid Laurier University
- We welcome everyone involved with GWF and anyone wishing to make connections to the program to attend and participate.
- We expect 600–700 attendees over the 3-day event

Global Water Futures

National Hydrology Research Centre

11 Innovation Boulevard

Saskatoon, SK S7N 3H5 Canada

Tel: (306) 966-2021; Fax: (306) 966-1193

Email: gwf.project@usask.ca

Website: www.globalwaterfutures.ca