Naturalization of Flow for the South Saskatchewan River Basin in Alberta

Shoma Tanzeeba

Hydrologist, Alberta Environment and Parks November 27, 2019

Presentation Overview

- What is flow naturalization
- Why we need naturalized flow
- The study area
- Previous and current studies
- Data requirement
- Methodologies/model used
- Challenges faced
- Latest update

What is Flow Naturalization

- Flow naturalization process consists primarily of removing the effects of anthropogenic influences from the recorded flows.
- Examples of anthropogenic interferences:
 - reservoir regulation (storage, release, net surface evaporation)
 - water withdrawals/diversions
 - return flows
- Project Depletion Method:
 Natural Flow = Recorded Flow + Net Depletion

Flow Naturalization

$$Q_{B(N)} = Q_{B(R)} + \sum (Q_{DV})_i - \sum (Q_{RF})_i + \sum EP_i + \sum \Delta S_i$$

(Wurbs, R. A., 2006)

No upstream reservoir

Includes upstream reservoir

Where,

- $Q_{B(N)}$ Naturalized flow
- $Q_{B(R)}$ Gaged regulated flow
- $(Q_{DV})_i$ Diversion upstream of gage flow
- $(Q_{RF})_i$ Return flow upstream of gage flow
 - EP_i Reservoir evaporation less precipitation
 - ΔS_i Change in storage in reservoir

Uhorta .

Why We Need Naturalized Flow

- South Saskatchewan River Basin (SSRB) is a highly regulated river basin
- Natural flows of SSRB are heavily allocated
- Naturalized flow information is:
 - Used to understand the impact of flow regulation and water uses on the streams
 - Used to support surface water management
 - Used to understand performance of Instream Objectives and Water Conservation Objectives
 - Used by our department to simulate water management scenarios for planning purposes using Water Resources Management Model (WRMM, WRM-DSS)
 - Used by Universities, consultants, researchers for hydrological studies
- Naturalized flows are estimated along the major rivers and their major tributaries

Study Area

- SSRB includes:
 - Red Deer River sub-basin
 - Bow River sub-basin
 - Oldman River sub-basin
 - South Saskatchewan River subbasin
- Hydrological and meteorological characteristics of the sub-basins are influenced by the elevations, topography and landscape features

Source: South Saskatchewan River Basin in Alberta, Water Supply Study, 2009

				100 200 5 10
	Sub-basins			
	Red Deer	Bow	Oldman	South Sask.
Gross Drainage Area (km²)	46,800	25,300	27,500	13,200
Median Annual Natural Flow Volume (dam ³)	1,666,000	3,829,000	3,343,000	

5

BC

Bow River Headwater

Alberta

Previous and Current Studies

- Previous Studies:
 - 1912-1978
 - 1912-1995
 - 1995-2001
 - 2002-2009
- Tool: WISKI Model (Hydstra Model), Windows based model with GUI
- Ongoing Update: 2010-2015

Major Projects Affecting Streamflow

- Reservoir operation (15 reservoirs)
- Diversion from 13 Irrigation Districts
- Irrigation Return Flows
- Major Municipal users (diversion and return flow)
- Highwood River diversions
- Major Licences (agricultural, industrial, recreational, environmental etc.)

Reservoir Operation

lberta .

Irrigation Districts

- Alberta represents two-thirds of irrigation developments in Canada
- 1.3 million acres (out of approx. 1.6 million acres in AB) are located in 13 Irrigation Districts within SSRB
- Water diversions are made from 22 locations by Irrigation Districts
- 80 return flow points within the basin
- Diversion from one or multiple subsub-basins, return to one or multiple sub-basins

Major Municipal users (diversion and return flow)

- Almost 48% of the province's population live in SSRB
- Highest population density is in Bow River sub-basin
- Major cities and Towns are:
 - Calgary, Red Deer,
 Lethbridge, Medicine Hat,
 Drumheller, Cochrane,
 Airdrie, Cardston, High
 River, Okotoks etc.

Allocation Distribution

2007 snapshot of active water allocation

Aberta 🗖

Highwood Diversion

Alberta

Models

- Eight Sub-models
 - 1. Belly River
 - 2. St. Mary River
 - 3. Willow Creek
 - 4. Oldman River
 - 5. Upper Bow River
 - 6. Lower Bow River
 - 7. South Sask. River
 - 8. Red Deer River

Data Requirement

Data Type	Data Layer	Data Source	No. of Stations/ Locations	Data Frequency
Hydrometric	Recorded Stream Flow	Water Survey of Canada (WSC)/ Trans Alta Utilities (TAU)/ Alberta Environment and Parks (AEP)	127	Daily
Climate	Precipitation, Temperature (Max, and Min), Relative Humidity (%), and Estimated Solar Radiation	Alberta Agriculture and Forestry (AAF)	Townships (16)	Daily
Reservoir	Reservoir Water Elevation	WSC/TAU	16	Daily
	Area Elevation Storage	WSC/TAU/AEP	16	Relationship
	TDS (Dissolved Solids)	Alberta Environment and Parks	16	Mean
Water Use	Irrigation District Diversion	WSC/ Irrigation Districts	22	Daily
	Irrigation District Return Flow	Alberta Agriculture and Forestry/ Irrigation District	80	Daily
	Municipal Water Use	Various Municipalities	13	Daily/ Monthly
	Other Major Diversion and Return	Specific Water Users	-	Daily/ Monthly
Topographic	DEM data	Alberta Environment and Parks		

Methodology

- Methodology: Project Depletion method
- The process starts with the recorded flows monitored by Water Survey of Canada
- Data gap fillings are done for the seasonal stations (winter data gap) and stations with missing data
- Deep lake evaporation data for reservoirs are calculated using the climate data
- Input data (flow, water level, water use, evaporation) for the models are in daily time steps
- Flows are routed downstream using WISKI (Hydstra) natural flow model
- Routing is done using U.S. Army Corps of Engineers Streamflow Synthesis and Reservoirs Regulation (SSARR) model

Methodology

- Adjustments are made along the stream network for anthropogenic influences such as reservoirs, municipal withdrawals and return flows, irrigation district withdrawals and return flows and other major uses
- Estimates of natural flow are done at flow gauging locations
- Estimates of natural flow are also done at additional sites of interests (ungauged locations)
- Much of the estimation is conducted using the WISKI (Hydstra) natural flow model,
- Desktop calculation is required for areas not incorporated into the model

Modelling Concept

Model Example

Model Example

Alberta

Final product

- Weekly naturalized flow data
- Estimated at 98 sites (in last update)
 - 80 sites at active or discontinued station locations
 - 18 sites are the sites of interest that do not coincide with existing hydrometric station locations.

Output Hydrograph

Alberta

Challenges Faced

- Ideally, naturalized flow data is required up to as recent years as possible
- However, availability of complete dataset for the modeling on a timely manner is a major challenge
 - Availability of official flow and water level data from Water Survey Canada
 - Data contributors are WSC, TransAlta, AEP
 - Official data not available for the latest years for all the stations
 - Official data not available for all the stations for the entire modelling time period (example missing 2014, 2015, 2016).
 - Availability of Water Use data
 - Not all of the required data are available through AEP's Water Use Reporting System;
 - Sometimes data available are not of required timesteps and/or of quality
 - In many cases need to contact individual municipalities and major licence holders.
 - Availability of Irrigation Return Flow Data
 - Need to obtain permission for data collection from all irrigation districts
 - Collect data from Alberta Agriculture and Forestry/Irrigation Districts.

Challenges Faced

- Need to send formal requests to individual data contributors which adds wait time
- Needs significant time commitment and resources
- In many cases, continuous observed data are not available, so data gap filling is necessary based on appropriate methodologies
- The required input data need to be of good quality to get a good estimation of naturalized flow
- The estimated naturalized flow can not be directly validated

Latest Update

- Currently working on to estimate naturalized flow for the 2010 – 2015 period
- Estimated timeline: 2020

Questions?

