Appendix B: Nutrients Trending Gra	aphs

Figure B1 Battle River: Ammonia Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 59.38

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 6 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 59.38 Adjusted Kruskal-Wallis statistic (H') = 59.38

Figure B2 Battle River: Ammonia Dissolved

Figure B3 Battle River: Ammonia Dissolved

Figure B4 Battle River: Nitrate as N

For the data shown, the Kruskal-Wallis test indicates SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 99.43

Calculated Kruskal-Wallis statistic = 99.43

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 31 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the

medians were equal. Kruskal-Wallis statistic (H) = 99.43 Adjusted Kruskal-Wallis statistic (H') = 99.43

Figure B5 Battle River: Nitrate as N

Figure B6 Battle River: Nitrate as N

Figure B7 Battle River: Total Nitrogen

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 3.014
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.
There were 6 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 3.014
Adjusted Kruskal-Wallis statistic (H') = 3.014

Figure B8 Battle River: Total Nitrogen

Figure B9 Battle River: Total Nitrogen

Figure B10 Battle River: Total Phosphorous

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 9.694

Calculated Kruskal-Wallis statistic = 9.694

Adjusted Kruskal-Wallis statistic (H') = 9.694

Adjusted Kruskal-Wallis statistic (H') = 9.694

Figure B11 Battle River: Total Phosphorous

Figure B12 Battle River: Total Phosphorous

Figure B13 Battle River: Total Dissolved Phosphorous

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 3.123

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 22 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 3.123

Adjusted Kruskal-Wallis statistic (H') = 3.123

Figure B14 Battle River: Total Dissolved Phosphorous

Figure B15 Battle River: Total Dissolved Phosphorous

Figure B16 Beaver River: Ammonia Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 76.01 Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 6 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted statistic (H') was utilized to determine if the

medians were equal. Kruskal-Wallis statistic (H) = 76.01

Adjusted Kruskal-Wallis statistic (H') = 76.01

Figure B17 Beaver River: Ammonia Dissolved

Figure B18 Beaver River: Ammonia Dissolved

Figure B19 Beaver River: Nitrate as N

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 112.3

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 13 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 11.2.3

Adjusted Kruskal-Wallis statistic (H') = 112.3

Figure B20 Beaver River: Nitrate as N

Figure B21 Beaver River: Nitrate as N

Figure B22 Beaver River: Total Nitrogen

For the data shown, the Kruskal-Wallis test indicates SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 24.71

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 4 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 24.71 Adjusted Kruskal-Wallis statistic (H') = 24.71

Figure B23 Beaver River: Total Nitrogen

Figure B24 Beaver River: Total Nitrogen

Figure B25 Beaver River: Total Phosphorous

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less For the data shown, the Kruskal-Wallis test indicates NO SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 0.7976

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 11 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 0.7975

Adjusted Kruskal-Wallis statistic (H') = 0.7976

Figure B26 Beaver River: Total Phosphorous

Figure B27 Beaver River: Total Phosphorous

Figure B28 Beaver River: Total Dissolved Phosphorous

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 0.3131

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 13 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 0.3131 Adjusted Kruskal-Wallis statistic (H') = 0.3131

Figure B29 Beaver River: Total Dissolved Phosphorous

Figure B30 Beaver River: Total Dissolved Phosphorous

Figure B31 Cold River: Ammonia Dissolved

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 1.332
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.
There were 2 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 1.332
Adjusted Kruskal-Wallis statistic (H') = 1.332

Figure B32 Cold River: Ammonia Dissolved

Sen's Slope Estimator 0.09 n = 55 0.072 Ammonia Dissolved (mg/L) Slope = 0.0005489 units per year. Mann-Kendall normal approx. = 3.543 critical = 1.96 0.054 Increasing trend significant at 95% confidence level $(\alpha = 0.025 \text{ per tail})$. 0.036 0.018 0 6/8/95 2/7/98 10/10/00 6/13/03 2/13/06 10/16/08

Date
Figure B33 Cold River: Ammonia Dissolved

Figure B34 Cold River: Nitrate as N

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 32.13

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 0 groups of ties in the data, so no adjustment to the Kruskal-Wallis statistic (H) was necessary.

Figure B35 Cold River: Nitrate as N

Figure B36 Cold River: Nitrate as N

Figure B37 Cold River: Total Nitrogen

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 0.09915
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were I groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the

medians were equal. Kruskal-Wallis statistic (H) = 0.09915 Adjusted Kruskal-Wallis statistic (H') = 0.09915

Figure B38 Cold River: Total Nitrogen

Figure B39 Cold River: Total Nitrogen

Date

Figure B40 Cold River: Total Phosphorous

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 11.29

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 0 groups of ties in the data, so no adjustment to the Kruskal-Wallis statistic (H) was necessary.

Figure B41 Cold River: Total Phosphorous

Figure B42 Cold River: Total Phosphorous

Figure B43 Cold River: Total Dissolved Phosphorous

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season.

Calculated Kruskal-Wallis statistic = 28.4
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were I groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 28.4

Adjusted Kruskal-Wallis statistic (H') = 28.4

Figure B44 Cold River: Total Dissolved Phosphorous

Figure B45 Cold River: Total Dissolved Phosphorous

Figure B46 North Saskatchewan River: Ammonia Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 73.93

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 4 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted statistic (H') was utilized to determine if the

Adjusted Kruskal-Wallis statistic (H') = 73.93

Figure B47 North Saskatchewan River: Ammonia Dissolved

Figure B48 North Saskatchewan River: Ammonia Dissolved

medians were equal. Kruskal-Wallis statistic (H) = 73.93

Figure B49 North Saskatchewan River: Nitrate as N

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 45.31

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 8 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 45.31

Adjusted Kruskal-Wallis statistic (H') = 45.31

Figure B50 North Saskatchewan River: Nitrate as N

Figure B51 North Saskatchewan River: Nitrate as N

Figure B52 North Saskatchewan River: Total Nitrogen

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 36.52
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 36.52

Adjusted Kruskal-Wallis statistic (H') = 36.52

Figure B53 North Saskatchewan River: Total Nitrogen

Figure B54 North Saskatchewan River: Total Nitrogen

Figure B55 North Saskatchewan River: Total Phosphorous

For the data shown, the Kruskal-Wallis test indicates SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 11.95

Calculated Krusscal-Wallis Statistic (H) = 11.95

Adjusted Kruskal-Wallis statistic (H) = 11.95

Calculated Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 11.95

Adjusted Kruskal-Wallis statistic (H') = 11.95

Figure B56 North Saskatchewan River: Total Phosphorous

Figure B57 North Saskatchewan River: Total Phosphorous

Figure B58 North Saskatchewan River: Total Dissolved Phosphorous

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 30.92

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 5 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 30.92 Adjusted Kruskal-Wallis statistic (H') = 30.92

Figure B59 North Saskatchewan River: Total Dissolved Phosphorous

Figure B60 North Saskatchewan River: Total Dissolved Phosphorous

Figure B61 Red Deer River (AB-SK): Ammonia Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season.

than the Chi-squared value, we conclude that a teast one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 15.19

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 11 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 15.19

Adjusted Kruskal-Wallis statistic (H') = 15.19

Figure B62 Red Deer River (AB-SK): Ammonia Dissolved

Figure B63 Red Deer River (AB-SK): Ammonia Dissolved

Figure B64 Red Deer River (AB-SK): Nitrate as N

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 51.83

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 4 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted statistic (H') was utilized to determine if the median concentration was unablest to the consequence of the

medians were equal. Kruskal-Wallis statistic (H) = 51.83

Adjusted Kruskal-Wallis statistic (H') = 51.83

Figure B65 Red Deer River (AB-SK): Nitrate as N

Figure B66 Red Deer River (AB-SK): Nitrate as N

Figure B67 Red Deer River (AB-SK): Total Nitrogen

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 11.05
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.
There were 5 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 11.05
Adjusted Kruskal-Wallis statistic (H') = 11.05

Figure B68 Red Deer River (AB-SK): Total Nitrogen

Figure B69 Red Deer River (AB-SK): Total Nitrogen

Figure B70 Red Deer River (AB-SK): Total Phosphorous

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 13.46
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

Tacunated C.m.-squared value = 3.8+1 with 1 degrees of freedom at the 5% significance level. There were 51 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 13.46

Adjusted Kruskal-Wallis statistic (H') = 13.46

Figure B71 Red Deer River (AB-SK): Total Phosphorous

Figure B72 Red Deer River (AB-SK): Total Phosphorous

Figure B73 Red Deer River (AB-SK): Total Dissolved Phosphorous

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 0.1615

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 18 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the

medians were equal.

Kruskal-Wallis statistic (H) = 0.1615

Adjusted Kruskal-Wallis statistic (H') = 0.1615

Figure B74 Red Deer River (AB-SK): Total Dissolved Phosphorous

Figure B75 Red Deer River (AB-SK): Total Dissolved Phosphorous

Figure B76 South Saskatchewan River: Ammonia Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 81.19
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.
There were 6 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted statistic (H') was utilized to determine if the

medians were equal. Kruskal-Wallis statistic (H) = 81.19

Adjusted Kruskal-Wallis statistic (H') = 81.19

Figure B77 South Saskatchewan River: Ammonia Dissolved

Figure B78 South Saskatchewan River: Ammonia Dissolved

Figure B79 South Saskatchewan River: Nitrate as N

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 331.8

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 13 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the seadons were used.

medians were equal. Kruskal-Wallis statistic (H) = 331.8 Adjusted Kruskal-Wallis statistic (H') = 331.8

Figure B80 South Saskatchewan River: Nitrate as N

Figure B81 South Saskatchewan River: Nitrate as N

Figure B82 South Saskatchewan River: Total Nitrogen

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season.

Calculated Kruskal-Wallis statistic = 85.82

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 85.82 Adjusted Kruskal-Wallis statistic (H') = 85.82

Figure B83 South Saskatchewan River: Total Nitrogen

Figure B84 South Saskatchewan River: Total Nitrogen

Figure B85 South Saskatchewan River: Total Phosphorous

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 3.343

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 15 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 3.343

Adjusted Kruskal-Wallis statistic (H') = 3.343

Figure B86 South Saskatchewan River: Total Phosphorous

Figure B87 South Saskatchewan River: Total Phosphorous

Figure B88 South Saskatchewan River: Total Dissolved Phosphorous

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 12.44

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 14 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 12.44 Adjusted Kruskal-Wallis statistic (H') = 12.44

Figure B89 South Saskatchewan River: Total Dissolved Phosphorous

Figure B90 South Saskatchewan River: Total Dissolved Phosphorous

Figure B91 Assiniboine River: Ammonia Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 113.6

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

Tarunateu C.m.-squareu vatue = 3.8+1 with 1 degrees of freedom at the 3% significance level. There were 8 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 113.6

Adjusted Kruskal-Wallis statistic (H') = 113.6

Figure B92 Assiniboine River: Ammonia Dissolved

Figure B93 Assiniboine River: Ammonia Dissolved

Figure B94 Assiniboine River: Nitrate as N

For the data shown, the Kruskal-Wallis test indicates SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 169.8

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 19 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the experience were used.

medians were equal. Kruskal-Wallis statistic (H) = 169.8

Adjusted Kruskal-Wallis statistic (H') = 169.8

Figure B95 Assiniboine River: Nitrate as N

Figure B96 Assiniboine River: Nitrate as N

Figure B97 Assiniboine River: Total Nitrogen

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 31.7
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.
There were 7 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 31.7
Adjusted Kruskal-Wallis statistic (H') = 31.7

Figure B98 Assiniboine River: Total Nitrogen

Figure B99 Assiniboine River: Total Nitrogen

Figure B100 Assiniboine River: Total Phosphorous

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 91.35

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 26 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the mediane groups and the statistic (H') was utilized to determine if the

medians were equal. Kruskal-Wallis statistic (H) = 91.35

Adjusted Kruskal-Wallis statistic (H') = 91.35

Figure B101 Assiniboine River: Total Phosphorous

Figure B102 Assiniboine River: Total Phosphorous

Figure B103 Assiniboine River: Total Dissolved Phosphorous

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 74.35

Tabulated Kruskal-Wallis statistic = 74.35

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 8 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted statistic (H') was utilized to determine if the

medians were equal. Kruskal-Wallis statistic (H) = 74.35

Adjusted Kruskal-Wallis statistic (H') = 74.35

Figure B104 Assiniboine River: Total Dissolved Phosphorous

Figure B105 Assiniboine River: Total Dissolved Phosphorous

Figure B106 Carrot River: Ammonia Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 134.1 Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 9 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted statistic (H') was utilized to determine if the ending reason.

medians were equal. Kruskal-Wallis statistic (H) = 134.1

Adjusted Kruskal-Wallis statistic (H') = 134.1

Figure B107 Carrot River: Ammonia Dissolved

Figure B108 Carrot River: Ammonia Dissolved

Figure B109 Carrot River: Nitrate as N

For the data shown, the Kruskal-Wallis test indicates SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 85.84

Calculated Kruskar-Wallis statistic = 35.84
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.
There were 9 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 85.84
Adjusted Kruskal-Wallis statistic (H') = 85.84

Figure B110 Carrot River: Nitrate as N

Seasonal Kendall

Figure B111 Carrot River: Nitrate as N

Figure B112 Carrot River: Total Nitrogen

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 15.52

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 5 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 15.52 Adjusted Kruskal-Wallis statistic (H') = 15.52

Figure B113 Carrot River: Total Nitrogen

Figure B114 Carrot River: Total Nitrogen

Figure B115 Carrot River: Total Phosphorous

For the data shown, the Kruskal-Wallis test indicates SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 6.924

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 16 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 6.924

Adjusted Kruskal-Wallis statistic (H') = 6.924

Figure B116 Carrot River: Total Phosphorous

Figure B117 Carrot River: Total Phosphorous

Figure B118 Carrot River: Total Dissolved Phosphorous

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 4.397
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 9 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 4.397 Adjusted Kruskal-Wallis statistic (H') = 4.397

Figure B119 Carrot River: Total Dissolved Phosphorous

Figure B120 Carrot River: Total Dissolved Phosphorous

Figure B121 Churchill River: Ammonia Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 6.425
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.
There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 6.425
Adjusted Kruskal-Wallis statistic (H') = 6.425

Figure B122 Churchill River: Ammonia Dissolved

Figure B123 Churchill River: Ammonia Dissolved

Figure B124 Churchill River: Nitrate as N

For the data shown, the Kruskal-Wallis test indicates SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 127.5

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 18 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the engine greater than the consequence of the co

medians were equal. Kruskal-Wallis statistic (H) = 127.5

Adjusted Kruskal-Wallis statistic (H') = 127.5

Figure B125 Churchill River: Nitrate as N

Figure B126 Churchill River: Nitrate as N

Figure B127 Churchill River: Total Nitrogen

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 12.43

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 0 groups of ties in the data, so no adjustment to the Kruskal-Wallis statistic (H) was necessary.

Figure B128 Churchill River: Total Nitrogen

Figure B129 Churchill River: Total Nitrogen

Figure B130 Churchill River: Total Phosphorous

For the data shown, the Kruskal-Wallis test indicates SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 74.21 Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 11 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the experience means and

medians were equal. Kruskal-Wallis statistic (H) = 74.21

Adjusted Kruskal-Wallis statistic (H') = 74.21

Figure B131 Churchill River: Total Phosphorous

Figure B132 Churchill River: Total Phosphorous

Figure B133 Churchill River: Total Dissolved Phosphorous

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 1.224

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 15 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the

medians were equal. Kruskal-Wallis statistic (H) = 1.224 Adjusted Kruskal-Wallis statistic (H') = 1.224

Figure B134 Churchill River: Total Dissolved Phosphorous

Figure B135 Churchill River: Total Dissolved Phosphorous

Figure B136 Qu'Appelle River: Ammonia Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 106.9
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 49 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 106.7

Adjusted Kruskal-Wallis statistic (H') = 106.9

Figure B137 Qu'Appelle River: Ammonia Dissolved

Figure B138 Qu'Appelle River: Ammonia Dissolved

Figure B139 Qu'Appelle River: Nitrate as N

For the data shown, the Kruskal-Wallis test indicates SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 157.4

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 12 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 157.4 Adjusted Kruskal-Wallis statistic (H') = 157.4

Figure B140 Qu'Appelle River: Nitrate as N

Figure B141 Qu'Appelle River: Nitrate as N

Figure B142 Qu'Appelle River: Total Nitrogen

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 0.3419

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 9 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 0.3419 Adjusted Kruskal-Wallis statistic (H') = 0.3419

Figure B143 Qu'Appelle River: Total Nitrogen

Figure B144 Qu'Appelle River: Total Nitrogen

Figure B145 Qu'Appelle River: Total Phosphorous

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 3.694
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.
There were 31 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the

medians were equal. Kruskal-Wallis statistic (H) = 3.694 Adjusted Kruskal-Wallis statistic (H') = 3.694

Figure B146 Qu'Appelle River: Total Phosphorous

Figure B147 Qu'Appelle River: Total Phosphorous

Figure B148 Qu'Appelle River: Total Dissolved Phosphorous

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 35.12

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 15 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 35.12 Adjusted Kruskal-Wallis statistic (H') = 35.12

Figure B149 Qu'Appelle River: Total Dissolved Phosphorous

Figure B150 Qu'Appelle River: Total Dissolved Phosphorous

Figure B151 Red Deer River (SK-MB): Ammonia Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 29.43 Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level. There were 1 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal. Kruskal-Wallis statistic (H) = 29.43 Adjusted Kruskal-Wallis statistic (H') = 29.43

Figure B152 Red Deer River (SK-MB): Ammonia Dissolved

Figure B153 Red Deer River (SK-MB): Ammonia Dissolved

Figure B154 Red Deer River (SK-MB): Nitrate as N

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 98.25

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 4 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted statistic (H') was utilized to determine if the median concentration was unablest to the same region.

medians were equal. Kruskal-Wallis statistic (H) = 98.25

Adjusted Kruskal-Wallis statistic (H') = 98.25

Figure B155 Red Deer River (SK-MB): Nitrate as N

Figure B156 Red Deer River (SK-MB): Nitrate as N

Figure B157 Red Deer River (SK-MB): Total Nitrogen

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 13.77

Tabulated Kruskal-Wallis statistic = 13.77

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 2 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted statistic (H') was utilized to determine if the median concentration of this consequently the Kruskal-Wallis statistic (H) was adjusted statistic (H') was utilized to determine if the

medians were equal. Kruskal-Wallis statistic (H) = 13.77 Adjusted Kruskal-Wallis statistic (H') = 13.77

Figure B158 Red Deer River (SK-MB): Total Nitrogen

Figure B159 Red Deer River (SK-MB): Total Nitrogen

Figure B160 Red Deer River (SK-MB): Total Phosphorous

121

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 13.96
Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.
There were 8 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted statistic (H') was utilized to determine if the sead-learner made

medians were equal. Kruskal-Wallis statistic (H) = 13.96

Adjusted Kruskal-Wallis statistic (H') = 13.96

Figure B161 Red Deer River (SK-MB): Total Phosphorous

Figure B162 Red Deer River (SK-MB): Total Phosphorous

Figure B163 Red Deer River (SK-MB): Total Dissolved **Phosphorous**

For the data shown, the Kruskal-Wallis test indicates SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 20.56

Calculated Kruskal-Wallis statistic = 20.56

Calculated Kruskal-Wallis statistic = 20.56

Calculated Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 20.56

Adjusted Kruskal-Wallis statistic (H') = 20.56

Figure B164 Red Deer River (SK-MB): Total Dissolved **Phosphorous**

Figure B165 Red Deer River (SK-MB): Total Dissolved Phosphorous

Figure B166 Saskatchewan River: Ammonia Dissolved

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 104.8

Tabulated Kruskal-Wallis statistic = 104.8

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted statistic (H') was utilized to determine if the

medians were equal. Kruskal-Wallis statistic (H) = 104.8

Adjusted Kruskal-Wallis statistic (H') = 104.8

Figure B167 Saskatchewan River: Ammonia Dissolved

Figure B168 Saskatchewan River: Ammonia Dissolved

Figure B169 Saskatchewan River: Nitrate as N

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 110.2

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 110.2

Adjusted Kruskal-Wallis statistic (H') = 110.2

Figure B170 Saskatchewan River: Nitrate as N

Figure B171 Saskatchewan River: Nitrate as N

Figure B172 Saskatchewan River: Total Nitrogen

For the data shown, the Kruskal-Wallis test indicates NO SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is less than or equal to the Chi-squared value, we conclude that no season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 0.2174

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 3 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 0.2174

Adjusted Kruskal-Wallis statistic (H') = 0.2174

Figure B173 Saskatchewan River: Total Nitrogen

Figure B174 Saskatchewan River: Total Nitrogen

Figure B175 Saskatchewan River: Total Phosphorous

For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 181.8

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 8 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted statistic (H') was utilized to determine if the sead-leave records.

medians were equal. Kruskal-Wallis statistic (H) = 181.8 Adjusted Kruskal-Wallis statistic (H') = 181.8

Figure B176 Saskatchewan River: Total Phosphorous

Figure B177 Saskatchewan River: Total Phosphorous

Figure B178 Saskatchewan River: Total Dissolved Phosphorous

For the data shown, the Kruskal-Wallis test indicates SEASONALITYat the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater For the data shown, the Kruskal-Wallis test indicates SEASONALITY at the 5% significance level. Because the calculated Kruskal-Wallis statistic is greater than the Chi-squared value, we conclude that at least one season has a significantly different median concentration of this constituent than any other season. Calculated Kruskal-Wallis statistic = 5.214

Tabulated Chi-Squared value = 3.841 with 1 degrees of freedom at the 5% significance level.

There were 27 groups of ties in the data, consequently the Kruskal-Wallis statistic (H) was adjusted. The adjusted statistic (H') was utilized to determine if the medians were equal.

Kruskal-Wallis statistic (H) = 5.214

Adjusted Kruskal-Wallis statistic (H') = 5.214

Figure B179 Saskatchewan River: Total Dissolved **Phosphorous**

Figure B180 Saskatchewan River: Total Dissolved **Phosphorous**